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Abstract
A numerically efficient Fredholm formulation of the billiard problem is
presented. The standard solution in the framework of the boundary integral
method in terms of a search for roots of a secular determinant is reviewed
first. We next reformulate the singularity condition in terms of a flow in
the space of an auxiliary one-parameter family of eigenproblems and argue
that the eigenvalues and eigenfunctions are analytic functions within a certain
domain. Based on this analytic behavior, we present a numerical algorithm to
compute a range of billiard eigenvalues and associated eigenvectors by only
two diagonalizations.

PACS numbers: 05.45.Mt, 02.30.Rz, 02.70.Pt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The billiard problem has played a vital role in the study of the manifestations of classical chaos
in linear wave systems (‘wave chaos’) including microwave, optical and acoustic cavities and
waveguides [1–8], and various single-particle quantum systems [9–11]. Even in strongly-
interacting, nonlinear systems the knowledge of the linear spectrum and eigenfunctions is
paramount to infer complex observables [12–17]. In the semiclassical limit, or at high
wavenumbers (k = 2π/λ), the numerical solution of the Laplace eigenvalue problem becomes
computationally challenging. Finite difference schemes [18] become impractical and Green’s
function matching methods [19] suffer from the unfeasibility of a root search.

The typical Green’s function matching method (various implementations of which include
the method of particular solutions (MPS) and boundary integral methods (BIM)) to solve the
Laplace eigenproblem consists of finding the zeros of the secular determinant over a given
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wavenumber range. In practice, this is accomplished through the singular value decomposition
(SVD) and scanning for the minima of the smallest singular values [20]. This requires typically
of the order of (kR)3 matrix operations per mode (where R is the typical size of the system).
Naturally, this procedure becomes progressively more expensive for higher lying eigenvalues.
Missing eigenvalues are a more important problem in practice. At larger wavenumbers, when
the spectrum becomes progressively denser, it is a serious problem to differentiate and separate
the minima of the lowest singular values3.

In this paper, we propose a fast and efficient method based on a Fredholm formulation
of the billiard problem, to compute the spectrum and the corresponding eigenfunctions of
the Laplace operator over a two-dimensional domain D. This method is closely related to the
scattering quantization method (SQM) [21–23] as it relies on a similar acceleration technique
of replacing the search for singular values of a matrix by an auxiliary eigenvalue problem. In
contrast to SQM which expands the Laplace eigenfunctions in terms of a set of basis functions
of the Laplace operator in the domain D, the expansion here contains the fundamental solutions
of the Laplace operator. This has two important advantages which makes its exposition
worthwhile. First, the proposed Fredholm formulation is known to be uniformly convergent
[24] while the SQM is known to be convergent only in so far as the Rayleigh hypothesis holds
[25]. Second, Fredholm formulations via BIM are amenable to semiclassical quantization
techniques through the transfer operator technique. Consequently, the behavior of the Laplace
operator for various domain geometries in the semiclassical limit can be directly related to the
invariants of underlying classical motion in that domain [26–28].

We would like to remark that the method outlined here provides a similar gain in speed
and robustness with respect to the scaling method of Vergini and Saraceno [29, 30]. A recent
boundary integral formulation of the scaling method has been carried out in [31]. To the
authors’ best knowledge the relation between scattering quantization methods and scaling
methods is still an open question.

2. Review of the BIM formulation

Let us briefly review the BIM formulation of the billiard problem that we are addressing.
Consider a two-dimensional Euclidean domain D bounded by a smooth boundary curve ∂D.
Within this domain, let {ψµ(r)} be the set of the eigenfunctions of the Laplace operator with
eigenvalues k2

µ,

−∇2ψµ(r) = k2
µψµ(r). (1)

We assume that ψµ(r) satisfies Dirichlet boundary conditions ψµ|∂D = 0. In the context of
the Schrödinger equation, Eµ = k2

µ are the discrete energy levels of a particle in a box defined
by ∂D.

Associated with the differential operator in equation (1) is the Green’s function

(∇2 + k2)G(r, r′; k) = δ(r − r′). (2)

Regardless of the boundary conditions on the Green’s function one can reformulate the billiard
problem (1), through a completely standard procedure, in terms of a Fredholm integral equation
of the second kind∫

∂D

dr(s ′)
∂

∂n
G(r(s), r(s ′); k)

∂

∂n′ ψ(r(s ′)) = −1

2

∂

∂n
ψ(r(s)), (3)

3 Nearly degenerate levels can in practice be differentiated within the SVD scheme by looking at several of the
smallest singular values [20].
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Figure 1. Schematics showing the variables used in the definition of the BIM kernel in
equation (6).

which has solutions only for discrete values k = kµ (‘quantization’). In the above equation,
s is the arc length along the boundary, ∂/∂n = n(s) · ∇, ∂/∂n′ = n(s ′) · ∇ and n(s) is the
outwards pointing unit normal of the boundary at location s.

Therefore, the problem in the two-dimensional domain is reduced to a problem on the
boundary. This reduction is physically very appealing as in the semiclassical limit the geodesic
flow is uniquely represented as a discrete map on the boundary. Of course, the reduction in
dimensionality has certain consequences. Whereas in the standard treatment of domain
problems through finite element methods one solves for the whole spectrum up to a maximal
wavenumber k, boundary formulations provide a narrow spectral range around a reference
wavenumber k.

The standard BIM formulation employs the free-space incoming outgoing Green’s
function [20, 32, 33]

G0(r, r′; k) = − i

4
H±

0 (k|r − r′|). (4)

Here H±
0 (z) are the first and second kind Hankel functions of order zero. Let us rewrite the

Fredholm problem (3) in an operator notation

Ku = u, (5)

where u(s) = ∂
∂n

ψ(r(s)) and the kernel using the free Green’s function (4) becomes

K(s, s ′; k) = −2
∂G0(r(s), r(s ′); k)

∂n

= − ik

2
cos θ(s, s ′)H+

1(k|r(s) − r(s ′)|). (6)

Here, cos θ(s, s ′) = n(s) · (r(s) − r(s ′))/|r(s) − r(s ′)|, i.e., θ(s, s ′) is the angle between
the normal at s and the cord connecting s and s ′ (see figure 1). Consequently, K (referred to
as K(k) in alternative notation) is clearly not a symmetric operator. Note that the diagonal
elements are finite and given by

lim
s→s ′

K(s, s ′; k) = 1

2π
κ(s), (7)

where κ(s) is the curvature at s. Hence the condition of quantization is

det(1 − K(k)) = 0. (8)

The standard numerical procedure to extract the zeros of this secular determinant in the context
of billiards is outlined in [20, 33].
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3. Scattering quantization approach to BIM

In contrast to the standard procedure outlined in the last section, we shall reformulate the
problem by considering the solution of the auxiliary eigenvalue problem

K(k)u = λu. (9)

This eigenvalue problem provides us with a set of eigenvalues and eigenfunctions,
{λ(i)(k), u(i)(k; s)}, parametrically dependent on the continuous variable k. The structure
of the operator K(k) is interesting. It can be shown via stationary phase integration that in the
semiclassical limit KK† is asymptotically diagonal, i.e., while the off-diagonal elements are
O(

√
k), the diagonal elements are O(k). The form of the diagonal elements is given by

(KK†)ss = k

2iπ

∫
ds ′ cos2 θ(s, s ′)

l(s, s ′)
. (10)

For arbitrary shapes, K(s, s ′; k) is however not unitary [34] and does not obey the spectral
theorem.

Nevertheless, a favorable property of this set is that for the finite-dimensional truncation
of K(k), the spectrum can be roughly divided into a null space and a unitary sector (to be
defined below). This can best be visualized by looking at the eigenvalue distribution of K. In
figure 2(a), we plot the absolute values of the eigenvalues {λ(i)(k0)}. It is clearly seen that
the distinction between the null-space eigenvalues (|λ(i)| ≈ 0) and the unitary eigenvalues
(|λ(i)| ≈ 1) becomes sharper for larger k, i.e., in the semiclassical limit. At a typical value of k,
the eigenvalues are distributed in the complex plane within the unit circle, and a fraction of the
eigenvalues lie in the vicinity of the unit circle representing the unitary sector (see figure 2(b)).
The size of this unitary sector is approximately 2[kR], which corresponds approximately to
the number of half wavelengths on the boundary [35].

Returning to the eigenvalue equation (9), we see that the quantization condition (8) can be
rewritten as λ(kq) = 1. In other words, whenever we find an eigenvalue λ(i)(kq) at 1 + 0i in the
complex plane, kq is a solution of (8) and u(i)(kq; s) is the associated quantized eigenvector.

We will now argue that not only are the (unitary sector) eigenvectors of K(k)

approximately orthogonal at a given k, but they also approximately diagonalize K(k) over a
range δkR ∼ O(1). (This range roughly corresponds to the one-dimensional free spectral
range of the billiard, defined by the interval of kR over which one can fit one more wavelength
into the longest chord in the domain D. We will refer to it shortly as the ‘free spectral range’.)
Consider the eigenvectors calculated at two different but close values of the parameter k, say
k0 and k0 + δk. We can define the overlap between the eigenvectors calculated at these two
different values by

〈u(i)(k0)|u(j)(k0 + δk)〉 =
N∑

l=1

(u(i))∗(k0; sl)u
(j)(k0 + δk; sl). (11)

This operation is well defined as long as we keep the system size N constant. In figure 3,
we start with an initial set of states |u(i)(k0)〉, i = 1, . . . , N , and plot for subsequent
k = [k0, k0 + �k] only the overlap of the various initial states with their maximal overlap
partner. We would like to note that there is in general only one state at k that has a considerably
larger overlap than all other states with an initial state u(i)(k0). Here we plot only a fraction
of the initial eigenvectors for the sake of visibility, but this behavior holds in general over
stretches δkR ∼ O(1) of the parameter k for eigenvalues in the first and fourth quadrants
of the complex plane (| arg λ(i)| < π/2). The typical change in overlap over δkR = 0.2 at
kR 
 100 is less than 1%.
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Figure 2. (a) Distribution of the magnitude of the eigenvalues of K(k) for kR = 20 (red),
100 (blue), 200 (black) for a quadrupolar billiard (R(φ) = R(1 + ε cos 2φ)) of deformation
ε = 0.1. The eigenvalues are ordered with respect to their absolute value, and the horizontal
axis denotes their relative order within all the eigenvalues (N). Note that the unitary sector scales
linearly with k (corresponds approximately to the number of open classical channels which can be
estimated to be 2[kR]). As the number of eigenvalues scales with the size of the system too, the
unitarity border is identical in all cases. (b) Distribution of the eigenvalues in the complex plane
for kR = 100. The solid line is the unit circle. In each case, the size of the system and hence the
number of eigenvalues is N = [6 × kR].
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Figure 3. Eigenvectors of K(k) for the quadrupole with deformation ε = 0.1. Overlap
of the eigenvector u(i)(k0) at kR = 100 with the traced eigenvector u(i)(k) over the range
kR = [100.0, 100.2].
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Figure 4. We follow an eigenfunction of K(k) for the quadrupolar shape with ε = 0.1 via the
method of highest eigenfunction overlap (see figure 3). Starting from the quantized eigenvalue
at kR = 20.725 we follow it in steps of δkR = 0.025 through one quantization cycle up to
kR = 24.175. (a) False color plots of the intensity of the traced wavefunction. (b) Eigenvalues at
each snapshot. In red we trace the motion of the eigenvalue of the particular state plotted in (a)
and in (c) we plot the corresponding error on the boundary given by Bµ = 1

L
∮
∂D

ds|ψµ(r(s))|2.
An animated graph can be found at http://quantumchaos.de/Media/JPhysA2007

An important consequence of this observation is that we can assign an identity to the
eigenvectors even away from quantization [23, 36]. To elucidate this point, consider the trace

http://quantumchaos.de/Media/JPhysA2007
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Figure 5. The speed dφ/dkR of a number of eigenvalues of K(k) for the quadrupole with ε = 0.1
around kR = 100. The speed dφ/dkR of a number of eigenvalues around kR = 100. The
corresponding eigenvectors are traced over one fourth spectral range, kR = [100.0, 100.2].

of one of the eigenvectors in figure 4. The initial eigenvector is not quantized and we follow
this state by the highest-overlap criterion over a range of δkR ≈ 3.5, a range that is larger
than the free spectral range. We only plot here five instances over which the state becomes
quantized (top to bottom). An important feature of this behavior is the way an extra node is
‘pushed’ into the billiard. We have to note that over such large stretches of kR, an eigenvector
typically undergoes avoided crossings. The avoided crossings happen predominantly around
arg λ(i) ≈ ±π in the second and third quadrants of the complex λ-plane. This is the region
of the complex eigenvalue plane where the null-space eigenvalues join the ‘unitary flow’ (see
figure 2(b) and the animation at http://www.quantumchaos.de/Media/JPhysA2007). However,
the numerical method that we propose below utilizes the behavior in the first and fourth
quadrants in the complex eigenvalue plane away from avoided crossings.

A second key observation concerns the behavior of the eigenvalues λµ(k) of K(k). This
notation makes explicit the adiabatic identity of the eigenvectors that we have established
above. With increasing k, the eigenvalue flow is counterclockwise. There is a clear distinction
between the unitary eigenvalues which flow along the unit circle |λ| = 1 and the null-space
vectors which accumulate at λ ∼ 0. The eigenvalues in transition that have an intermediate
value of |λ| follow a universal path (compare to the case of circular billiard in figure 10) and
are added to the unitary flow at about φ ≡ arg λ ≈ π as noted above. This is the mechanism
by which the density of states of the billiard eigenvalues increases, which according to the
Weyl formula has the mean asymptotic behavior ρWeyl(k) = kA/2π , where A is the area of the
domain D. In figure 5(a), we show that the phase speeds of the unitary eigenvectors, defined
by v

µ
φ (k) = dφµ(k)/dk, are constant over a stretch of δkR ∼ O(1). This is one of the main

ingredients of the numerical diagonalization procedure that we propose in the next section.

4. An accelerated Fredholm root search and the accuracy of solutions

Building on these observations, we propose the following numerical algorithm to compute
both the billiard eigenvalues and the corresponding eigenfunctions (equation (1)). Below,
we refer to this method as the ‘eigenvalue decomposition (EVD) extrapolation method’.
We first determine the unitary eigenvectors, the eigenvalues and their corresponding phase

http://www.quantumchaos.de/Media/JPhysA2007
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Figure 6. Extrapolation error defined by equation (14) for the eigenfunctions of the stadium
billiard of deformation L/R = 2 (see inset). The horizontal axis represents the initial value
of the phase of the eigenvalue φ0

µ from which the solution is extrapolated. Data sets for
kR0 = 50, 100, 200, 300, 400 are plotted.

speeds
{
λµ(k0), uµ(k0), v

µ
φ (k0)

}
at a value k = k0, namely, equation (9). This requires

two diagonalizations. We then extrapolate the quantization values kµ using the approximate
constancy of the phase speeds

kµ = k0 +
1

v
µ
φ (k0)

(
2π − φ0

µ

)
, (12)

where φ0
µ = arg[λµ(k0)]. The billiard eigenfunctions in the domain are then computed using

the approximate uµ(k0) through

ψµ(r) =
∮

∂D

dr′(s)G0(r, r′(s); kµ)uµ(k0; s). (13)

To assess the accuracy of the solutions we introduce the following quantity, the extrapolation
error:

Eµ(k0) = ‖(1 − K(kµ))uµ(k0)‖2

‖uµ(k0)‖2
. (14)

Here, ‖·‖2 denotes the 2-norm. In figure 6, we plot the resulting error Eµ(k0) for extrapolation
from various values of initial k0. Instead of k0, we plot the error as a function of φ0

µ. This
provides a measure of the accuracy of the solutions as a function of the interval over which
we extrapolate. This in turn determines the fraction of the eigenvalues with a given accuracy.
Note that a given φ0

µ occurs at different values of k for each µ.
The data for different k0R in figure 6 demonstrate that despite the highly oscillatory nature

of the higher lying excited billiard eigenfunctions, the error remains relatively constant as k is
increased. A representative highly excited stadium state is plotted in figure 7.

We should note that the billiard eigenfunctions presented here are domain-normalized.
As the normal derivative of the wavefunction u(s) on the boundary contains all information to
determine the wavefunction throughout the domain, it is possible to express the normalization
condition in terms of u(s) as [37]∮

∂D

dsn · r(s)|uµ(k0; s)|2 = 2k2
0, (15)

which then yields a ψµ(x) which is normalized to unity in D.
Next we compare the accuracy of the extrapolation method to that of SVD. In table 1, we

compare the eigenvalues found via the EVD extrapolation kEVD
µ to those found by an SVD scan
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Figure 7. A representative plot of a quantized wavefunction for the stadium of deformation
L/R = 2 at kR = 1300.027 49 and an extrapolation error of 0.002 96.

Table 1. Comparison of the EVD and SVD methods. The EVD extrapolation is performed at
k0R = 50. Column 1 contains the extrapolated billiard eigenvalues for a stadium of deformation
L/R = 2. Columns 2–5 contain the eigenvalues obtained by an SVD scan at 25, 75, 200 and
5000 points in the interval [40.75, 50.25]. Column 6 contains the extrapolation error for the EVD
eigenvalues in column 1 and the final column contains the relative error of the EVD eigenvalues
with respect to SVD5000. In the last row we have the average relative error for the eigenvalues
in columns 1–5 compared to SVD5000. We also quote the computation time on a quad core CPU
running at 1.6 GHz in the second row. Note that in this table we show only a fraction of the
eigenvalues computed.

EVD SVD25 SVD75 SVD200 SVD5000
10.41 s 35.22 s 102 s 272 s 6728 s Eµ Relative error

49.776 68 49.7700 49.7700 49.7725 49.771 80 6.3505 × 10−3 9.8116 × 10−5

49.885 09 49.8900 49.8900 49.8850 49.885 60 1.2706 × 10−2 1.0193 × 10−5

49.891 77 – – 49.8900 49.889 00 3.7417 × 10−2 5.5620 × 10−5

49.941 80 49.9500 – 49.9400 49.939 30 1.6519 × 10−2 5.0195 × 10−5

49.949 93 – 49.9500 49.9500 49.949 40 7.4363 × 10−3 1.0725 × 10−5

50.036 33 – 50.0430 50.0350 50.035 20 1.1042 × 10−2 2.2719 × 10−5

50.043 63 50.0500 – 50.0450 50.044 60 5.5522 × 10−3 1.9338 × 10−5

50.080 58 – 50.0770 50.0775 50.078 10 1.0779 × 10−2 4.9640 × 10−5

50.088 56 50.0900 50.0900 50.0900 50.090 20 1.8785 × 10−2 3.2551 × 10−5

50.166 31 50.1500 50.1570 50.1575 50.157 40 5.5390 × 10−2 1.7773 × 10−4

50.201 71 50.1900 50.1970 50.1950 50.194 10 3.6940 × 10−2 1.5175 × 10−4

50.233 31 – 50.2300 50.2325 50.231 40 7.6969 × 10−2 3.8103 × 10−5

5.9723 × 10−5 1.7245 × 10−4 5.7066 × 10−5 1.1829 × 10−5 0

over an interval of [40.75, 50.25]. The extrapolation method can attain an accuracy obtained
by an SVD scan at about 75 points, providing a factor of roughly 10 in computation speed
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Figure 8. Logarithmic plot of the error given by |1 − λµ(kµ)| for a state of the stadium billiard of
deformation L/R = 2 quantized at kR ≈ 20.2965 as a function of boundary discretization. η is
defined by N = ηkR.

as seen in table 1. Important to note is that the simple SVD scan will fail to account for all
resonances. Only at a scan over 200 points have all resonances been resolved, which increases
the factor to 27.4 The gain in speed at a fixed accuracy will grow linearly with kR as the
number of modes within a given interval of initial phases �φ0 will increase linearly with kR.
We would like to emphasize that the accuracy of the EVD method and the SVD method is in
principle identical (this is clearly seen in comparing the minima attained in figures 9(a) and
(b)) and it is the desired level of accuracy that will determine the speed enhancement obtained
by the EVD method. We have implemented more complex extrapolation methods to provide
a desired level of accuracy. The ultimate accuracy that can be attained scales exponentially
with the number of discretization points on the boundary. This is shown in figure 8. Finally,
in table 2, we show the accuracy of the EVD method for a case where analytic solutions are
available, namely the circular billiard.

5. Relation to the SVD method

In this section, we would like to clarify the relation between our method and the SVD method
[20, 33]. In figure 9, we compare the lowest few singular values σµ(k) to |1 − λµ(k)| which
we find by diagonalizing K(k) at an arbitrary k within the spectral range plotted. We find that
the plots are almost identical. This should not be surprising, because L(k) = 1 − K(k) is the
matrix whose singular values are computed. A significant point is however that whereas the
singular values σµ(k) are real (this is a choice of the numerical SVD routine) and obviously
not analytic as a function of k, λµ(k) are complex (and can be shown to be analytic). These
points can be put into a more formal setting by following the discussion in [38]. Considering
additionally the singular vectors v of L†(k) = 1 − K†(k), it can be shown that a generalized
complex singular value can be defined by a proper choice of relative phases of uµ and vµ, which
is analytic as a function of k. These analytic complex singular values are exactly 1 − λµ(k).
The real singular value calculated by the numerical SVD routines is σµ(k) = |1 − λµ(k)|.

4 As stated before, methods have been proposed to use several of the lowest singular values to resolve nearby
resonances [20]; however, we find that such an algorithm still leaves room for ambiguity at large wavevectors
compared the EVD extrapolation method.
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Figure 9. (a) Comparison of the four lowest singular values σµ(k) of L(k) = 1−K(k) and (b) the
four eigenvalues λµ(k) of K(k) with the lowest |λµ(k)− 1|, for a range of kR = 27.25, . . . , 27.75
in a quadrupole with ε = 0.3.

Table 2. Accuracy of the extrapolation method for the circular billiard. We compare the solutions
obtained by the EVD extrapolation method (kEVD

µ ) to the solutions obtained (kµ) by finding the
j th zero of the Bessel function Jm(x). We show the relative error (with respect to the analytic
solution computed to a precision of 1 × 10−8) and the extrapolation error in the fifth and sixth
columns, respectively.

m j kµ kEVD
µ Relative error Eµ

6 1 9.936 109 52 9.937 234 95 1.1327 × 10−4 1.883 6580 × 10−3

1 3 10.173 468 13 10.179 838 31 6.2616 × 10−4 1.276 3550 × 10−2

34 3 49.959 331 91 49.968 132 88 1.7616 × 10−4 1.316 2860 × 10−2

16 9 50.044 606 01 50.055 886 73 2.2541 × 10−4 2.166 7890 × 10−2

85 2 99.982 820 66 99.985 226 43 2.4062 × 10−5 3.105 6810 × 10−3

60 8 99.985 102 43 99.988 544 23 3.4423 × 10−5 6.024 2240 × 10−3

24 21 99.994 343 62 99.994 404 86 6.1246 × 10−7 6.091 2910 × 10−4

2 46 149.998 549 19 149.983 124 49 1.0283 × 10−4 3.005 6170 × 10−2

68 19 150.028 147 61 150.019 754 66 5.5943 × 10−5 1.419 1580 × 10−2

0 48 150.011 882 45 150.027 552 29 1.0446 × 10−4 3.219 9340 × 10−2

57 23 150.044 772 81 150.041 700 15 2.0478 × 10−5 4.975 9550 × 10−3

6. Explicit results in the circular billiard

In this section we will substantiate the above observations for an analytically solvable problem,
namely the Dirichlet problem of a circular billiard. To solve the Laplace eigenvalue problem
with Dirichlet boundary conditions for a circular quantum billiard analytically, we can write
the Green’s function, using Bessel addition theorems [39], as

G0(r, r′) = − i

4
H+

0 (k|r − r′|) = − i

4

∑
m

H+
m(kr)Jm(kr ′) eim(φ−φ′) (16)

for r > r ′. Then, assuming that r ′ is on the boundary and r is outside the circular domain,

∂G(r, r′)
∂n′ = ∂G(r, r′)

∂r ′ = − ik

4

∑
m

J′
m(kR)H+

m(kr) eim(φ−φ′). (17)
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Figure 10. The red curve shows the parametric behavior of the complex eigenvalues of the circle
λm(k), via equation (23) with m = 10 and kR = 0, . . . , 100. Black circles show the eigenvalues
found numerically for kR = 100 with N = [10 × kR].

Let us also Fourier expand the field

u(φ) =
∑
m

qm eimφ. (18)

Evaluating the integral in (3) we are left with a diagonal kernel

Kmm′ = (iπkRH+
m(kR)J′

m(kR) − 1)δmm′ . (19)

Thus, the singular values can be written as

σm(k) = 2 − iπkRH+
m(kR)J′

m(kR) = 0. (20)

Using the Bessel identity

Jm(x)H±′
m (x) − H±

m(x)J′
m(x) = 2i

πx
, (21)

this can be equivalently written as

σm(k) = Jm(kR)H+′
m(kR). (22)

Note that the singularity condition yields the secular equation of the internal Dirichlet problem,
i.e., Jm(kR) = 0 and that of the external Neumann problem H+′

m(kR) = 0 (with Sommerfeld
radiation conditions). The latter does not have any solutions on the real axis while the former
has all its solutions strictly on the real axis.

Now let us look at the eigenvalue problem and the extrapolation method. The eigenvalues
are parametrically dependent on k and given by

λm(k) = −1 + iπkRH+
m(kR)J′

m(kR). (23)

In figure 10 we show that this parametric behavior reproduces the general features observed
for smoothly deformed shapes (compare to figure 2), in particular the transition behavior of
the eigenvalues from the null space to the unitary sector.
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Using Debye asymptotic expansions of the Bessel functions, one can show that for
m < kR (m  1)

λm(k) ∼ ei�, (24)

where � = 2m(tan β − β) + π/2 and cos β = m/x. For m > kR, |λm| ∼ e−2m(β−tan β) � 1.
Note that the transition region around m ∼ kR (which corresponds to the behavior in the
transition region) is not represented uniformly by the above expressions. We thus find that the
speed of the unitary eigenvalues (in this case m < kR) is asymptotically given by

vm
φ (k) ∼ 2 sin β. (25)

Hence, the change in speed is asymptotically small in kR (dvφ/dk ∼ (kR)−1) as is observed
numerically for arbitrary smoothly deformed shapes.

7. Conclusion

We have presented an efficient and robust algorithm to calculate the eigenvalues of the Laplace
operator based on a novel Fredholm formulation. We have shown that approximately of the
order of kR eigenvalues can be found with just two diagonalizations and no root search.
This overcomes a formidable problem faced by diagonalization algorithms based on SVD for
finding large eigenvalues: distinguishing real from false minima in singular values when the
density of states ρWeyl(k) is large.
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[9] Stöckmann H-J 1999 Quantum Chaos: An Introduction (Cambridge: Cambridge University Press)
[10] Haake F 2000 Quantum Signatures of Chaos (Berlin: Springer)
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[23] Türeci H E, Schwefel H G L, Jacquod Ph and Douglas Stone A 2005 Modes of wave-chaotic dielectric resonators

Prog. Opt. 47 75–137
[24] Atkinson K E 1997 The Numerical Solution of Integral Equations of the Second Kind (Cambridge, MA:

Cambridge University Press)
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